##RS纠删算法原理
A.1 纠删码是存储领域常用的数据冗余技术, 相比多副本复制而言, 纠删码能够以更小的数据冗余度获得更高数据可靠性。 Reed Solomon Coding是存储领域常用的一种纠删码,它的基本原理如下: 给定n个数据块d1, d2,…, dn,n和一个正整数m, RS根据n个数据块生成m个校验块, c1, c2,…, cm。 对于任意的n和m, 从n个原始数据块和m 个校验块中任取n块就能解码出原始数据, 即RS最多容忍m个数据块或者校验块同时丢失(纠删码只能容忍数据丢失,无法容忍数据篡改,纠删码正是得名与此)。
A.2 编码原理
RS编码以word为编码和解码单位, 大的数据块拆分到字长为w的word(字长w取值一般为8或者16位),然后对word进行编解码。 所以数据块的编码原理与word编码原理没什么差别, 为论述方便, 后文中变量Di, Ci将代表一个word。
首先, 把输入数据视为向量D=(D1,D2,…, Dn), 编码后数据视为向量(D1, D2,…, Dn, C1, C2,.., Cm),RS编码可视为如图A.1所示矩阵运算。 下图最左边是编码矩阵, 矩阵上部是单位阵(n行n列),下边是vandermonde矩阵B(m行n列), vandermode矩阵如图A.2所示, 第i行,第j列的原数值为j^(i-1)。之所以采用vandermonde矩阵的原因是, RS数据恢复算法要求编码矩阵任意n*n子矩阵可逆。图A.1: 编码运算

图A.2:vandermode矩阵
数据恢复原理
RS最多能容忍m个删除错误。 数据恢复原理的过程如下:
(1)从编码矩阵中删去丢失数据块和丢失编码块对应行。 假设D1、C2丢失, 根据图A.1所示RS编码运算等式,我们得到如下B’以及等式。
(2)由于B‘是可逆的, 两边乘上B’逆矩阵。
(3)得到如下原始数据D的计算公式
(4)对D重新编码,得到丢失的校验码
矩阵求逆采用高斯消元法, 需要进行实数加减乘除四则运算,无法作用于字长为w的二进制数据。 为了解决这个问题, RS采用伽罗华群GF(2^w)中定义的四则运算法则。 GF(2^w)域有2^w个值, 每个值都对应一个低于w次的多项式, 这样域上的四则运算就转换为多项式空间的运算。 GF(2^w)域中的加法就是XOR, 乘法比较特殊,需要维护两个大小为2^w -1的表格: log表gflog,反log表gfilog。
乘法公式: a * b = gfilog(gflog(a) + fglog(b)) % (2^w -1)
##Github项目源码
源码来自:https://github.com/Backblaze/JavaReedSolomon
如果你想处理使用RS纠删算法处理字节数组,可以参照我的GitHub项目(在上一链接的基础上我进行了接口和实现的编写)
- GitHub链接: https://github.com/RobinLiew/JavaReedSolomon
- 使用例子
1 | package com.backblaze.erasure.robinliew.dealbytesinterface; |